Posts Tagged With: artbots

Program 45: Artbots 2.0

Artbots is really more of a gizmo/gadget project with some scientific reasoning and problem-solving thrown in the mix.  With a few simple items from the dollar store plus a little tenacity (not everything goes as planned in a project like this!), we designed with our own hands some nifty “robots” that created art (and even some “music” thanks to the creativity of some of my scientists)!   There are many sites that actually provide instructions for how to create versions of artbots, so feel free to test a few models to see what works best for you (and your budget). My Artbots 2.0 are even easier to complete than the original version we did over a year ago thanks to an unexpected change in available supplies. I love when changes actually make things easier for us 🙂

Materials

  • Electric toothbrushes + some spares (I purchased the GB brand battery-operated brushes sold at Dollar Tree; I found it VERY handy to have a few spares on hand). NOTE: Our previous Artbots were made with the Luminant brand of electric toothbrush. While you can still find Luminants in Dollar Tree stores, the GB brushes are much more common at this time (and actually make for much easier Artbot adaptations)!
  • Needle-nose pliers
  • Box cutter (to cut the pool noodles down to size before the program, though scissors work great as well)
  • Electrical tape + scissors (though masking tape or duct tape work just as well)
  • Styrofoam pool noodles (I found these at Dollar Tree as well)
  • Rubber bands of various sizes
  • Markers or pens (thin or thick – makes no difference!)
  • AA Batteries (which I also purchased at Dollar Tree on the cheap). NOTE: The Luminant brand brushes actually came with a battery (which sometimes didn’t work, so I had spare batteries for emergencies). The GB brand does NOT come with the necessary AA battery, so you will need to supply them (and it’s still a good idea to have spares on hand for the occasional dud).
  • Paper to test the Artbots on – I actually had a giant roll of white paper that I used to fully cover the surfaces of our work tables, so my scientists could just test their bots whenever they felt like it without having to worry about finding scrap paper, or keeping their bot confined to a small piece of paper.
  • Any other supplies you want to use for decorating. I pulled out everything of interest I could find in our craft supply closet: beads, pipe cleaners, pompoms, buttons, google eyes, jingle bells, colored craft sticks, etc.

STEP ONE:  Take apart the GB Toothbrush

Here is where the GB brand completely trumps the Luminant brand for ease of modification. The GB brush very simply pulls apart into 4 pieces, as seen in the images below. The motor is already a part of the battery casement with the on/off button, so once you have pulled apart the toothbrush, you simply need to put a single AA battery into the battery casement and test it by pressing the on/off button! My motto is “always be prepared for anything,” and sure enough, about 1/3 of my scientists had toothbrushes that were a little finicky about fully separating. I bopped around the room with my needle nose pliers and helped yank out the battery casement for the scientists experiencing some trouble. And there were a few cases of over-exuberant separating where the scientists actually pulled the motor and a bent metal base out of the battery casement (in most cases we were able to reassemble on the fly) – and a few cases where the motor just didn’t turn on despite testing multiple batteries. And THAT is why I always have extra brushes on hand. When you’re buying electric toothbrushes from a dollar store, you really do have to be prepared for a few duds in the mix.

STEP 1

STEP 1

Possible additional pieces from Step 1

Possible additional pieces from Step 1

When things go slightly wrong...

When things go slightly wrong…

Once all of my scientists had separate battery casements with motors attached, and all motors had been tested, it was time for our next big challenge…

STEP TWO:  Houston, we have a problem! Fitting the motor and battery casement into the pool noodle pieces…

With the Luminant brand brushes, the cobbled together battery casement and motor fit nice and snuggly inside the hollow center of our pool noodle pieces. I discovered during my own personal testing prior to the program that the battery casement from the GB brushes was a bit thinner and actually slips straight through the hollow center of the pool noodle. I suspected that fixing that would probably be as simple as using some rubber bands or duct tape to fill out the space, but I wanted to involve my scientists in the problem-solving. So I demonstrated our problem to the group and asked them to help me find a solution. Most of the scientists quickly figured out that you could use duct tape or masking tape to prevent the motor from falling out of the bottom of the pool noodle piece. HOWEVER, as many discovered, you also had to make the battery casement/motor SNUG inside the pool noodle. If the battery casement was still loose inside the pool noodle, the motor was unable to properly vibrate the noodle and move it around the table. Some scientists filled the gaps with pipe cleaners; others used rubber bands. Both solutions worked well.

With that problem solved, all that remained was the fun and freedom to design the individual bots!…

FINAL STEP:  Decorate!

Photo Oct 14, 4 55 01 PMI provided our scientists with pipe cleaners, google eyes, feathers, fun buttons, etc. (pretty much any fun supplies I could find in our crafting storage).  Some artbots can be made using plastic cups and the like, but the beauty of the styrofoam pool noodle pieces is that decorating is a snap! For most supplies, all you need to do is push materials directly into the styrofoam – no glue or tape required. I did provide wet glue for items like pompoms, but most scientists quickly realized that waiting for glue to dry was no fun – it was so much easier to poke materials into the pool noodle. I personally find that pipe cleaners are invaluable – you can weave them through button holes, wrap them around pompoms – and as my super creative scientists discovered, you can even string tiny bells onto them! And the ends of pipe cleaners very easily poke straight into the pool noodles.

In an interesting and unexpected turn of events, my scientists got so inspired by the act of creating their bots that they even took apart about a dozen of my pens on the supply table so they could make use of the springs and plastic pen shells! [I totally didn’t see that one coming 🙂 ]

I actually covered our usual program tables with paper so my scientists didn’t even have to worry about scrap paper (as you can see in the video above). Once the artbots were assembled and decorated, my scientists had free reign of table surfaces to create their art. At some point, of course, the battery will likely wear out and you will need to pull the motor assembly out of the pool noodle to replace the battery. But that’s a simple price to pay for such a fun gadget!

 

Categories: Gadgets, Inventions | Tags: | Leave a comment

Program 34: ArtBots!

Art + Robots = Crazy Fun!

The G3 scientists and I LOVED this most recent program that tested our skills on the gadget/gizmo end of the spectrum. With a few simple items from the dollar store plus a little tenacity (some of the connections can be a little finicky), we created with our own hands some nifty “robots” that created art!  I’ll stray a bit from my usual style of blog posts to include step-by-step instructions with pictures below (as I found that particularly handy in explaining the project to others). There are many sites that actually provide instructions for how to create versions of artbots, but I rarely found one with pictures (and personally I find visual references very helpful). So here goes! If you have any questions, feel free to post them to comments and I’ll see if I can give some needed advice 🙂

Materials

  • Electric toothbrush + some spares (I purchased the Luminant brand battery-operated brushes sold at Dollar Tree; I found it handy to have a few spares on hand)
  • Needle-nose pliers
  • Box cutter (to cut the pool noodles down to size)
  • Electrical tape + scissors (though masking tape or duct tape probably work similarly)
  • A styrofoam pool noodle (I found these at Dollar Tree as well)
  • Rubber bands
  • Markers or pens (thin or thick – makes no difference!)
  • Spare batteries (just in case the one that came with the toothbrush is a dud)
  • Any other supplies you want to use for decorating

STEP ONE:  Test the toothbrush battery and motor

image

Step 1

This is a simple enough test. Following the instructions on the back of the toothbrush package, you simply need to insert the battery into the toothbrush and turn it on. I found that some of the toothbrushes were a bit temperamental even at this step. If the toothbrush didn’t work at first, I give the brush a gentle shake or smack with my hand. On the rare occasion that even that didn’t turn the brush on, I provided a new battery and that fixed the problem.

STEP TWO:  Removing the battery casing

image-2

Step 2B

Step 2A

Step 2A

This step takes a little muscle and the needle-nosed pliers. Pull the bottom off the toothbrush, remove the battery, and look inside. You’ll see a circle of plastic – that’s the top of the battery casing. You need to grasp one edge of the casing with the pliers and firmly yank to pull the battery casing outside of the toothbrush casing. On a rare occasion, the metal piece attached to the battery casing pulled off during this step. If that happened, I had a spare toothbrush on hand for my scientist to use.

STEP THREE: Removing the motor with spring

This step was a favorite for a lot of my scientists 🙂 With luck, you may find that the motor and spring naturally fall out of the toothbrush casing when you pull out the battery casing. If that doesn’t happen, you need to shake it loose from the toothbrush. My scientists and I discovered that the best way to do this was to the throw the toothbrush down onto a carpeted floor. If you use this method, be aware that the spring may detach from the motor. It’s easy enough to hook the spring back onto the motor, but you may lose sight of the spring itself, especially if you have a dark-colored carpet like we have in our program room. In a few cases we needed to crack open some spare toothbrushes simply to pirate the spring piece for one of my scientists.

After steps two and three, you should have the following two pieces:

image-3

Battery Casing + Motor with Spring

Step 4

Step 4

STEP FOUR:  Put the battery back in the casing

You’ll notice in the picture above that the metal piece attached to the battery casing has a longer straight piece that sticks out above the smooth, curved edge of the casing – and a shorter end that sticks out from the end that has two little plastic “legs.” When you put the battery back into the casing, you want the positive end (with the bump) to stick out from the same end as the little plastic legs.

STEP FIVE:  Creating the base of our re-purposed motor

image-7

Step 5C

Step 5B

Step 5B

Step 5A

Step 5A

For this step, you use the bottom, colored piece from the toothbrush itself and place the battery with casing from the above step into the colored piece (this is the piece from the toothbrush that actually has the on/off switch on it). The battery should go into the colored piece with the positive end first (the end with the bump). As you’re pushing the battery into the colored piece, you also want to line up the metal square on the colored piece with the metal piece from the battery casing. The metal piece from the battery casing should overlap the metal square on the base piece (refer to the pictures on the right). When you have the metal pieces overlapping, and you’re sure that the battery is pushed fully into the base piece, you should securely tape these components together with the electrical tape. [It’s okay to have the tape directly touch the metal pieces – you need to make sure this connection stays secure.]

STEP SIX:  Attaching the motor and spring to the battery and base

image-10

Step 6C

Step 6B

Step 6B

Step 6A

Step 6A

This is by far the trickiest step – not because it is difficult to put the pieces together but because the connections themselves need to be spot on or you won’t have a functioning motor. Looking at the motor and spring, you’ll see that on one side there are two small copper connectors on either side of the motor. The copper connector on the left is attached to the spring – the connector on the right is slightly curved but is not attached to anything. It is the right copper connector that you need to work with. You need to hook and/or align the metal piece still sticking up from the top of the battery/base component to that free copper connector on the right. I actually found it very handy to have the on/off switch of the base in the “on” position for this step so you can be sure when you have all pieces properly aligned. Once your connection is good and your motor is spinning – with the the base still turned “on” – firmly tape the motor and spring to the battery/base component with the spring in direct contact with the battery.  I also found that, on occasion, I needed to jury-rig the whole assembly once everything was taped together because despite repeated taping attempts the battery in the base kept slipping a little. This fix was simple enough – a double-wrapped rubber band placed around the whole assembly length-wise (you will have to wiggle it a little to make sure the on/off switch is still accessible, and you need to make sure the spinning portion of the motor is free on the other end). This fix consistently worked for several of my scientists and me.

STEP SEVEN:  Putting the final pieces together

image-12

Step 7B

Step 7A

Step 7A

Now we’re getting to the really fun stuff! I cut manageable pieces from the styrofoam pool noodles (about 4.5 inches in length) – you can do this with scissors, but I found it much easier to do with a box cutter. [NOTE: I did this step in advance of the program and then just let my scientists choose their favorite color.]  You take your fully taped motor assembly and push it into the hole inside the pool noodle piece, making sure that the on/off switch remains exposed for easy access. [NOTE:  You should once again test your device to make sure no connections have come loose by turning it “on” at this point.  If the motor is no longer turning on, simply pull it out of the styrofoam piece and retape where necessary.]  Place rubber bands around the outside of the pool noodle piece near both the top and bottom of the piece. Attach as many markers as you want by pushing them under the rubber bands, with the inked ends sticking out from the opposite end of the on/off switch. Now give the piece a good test by placing it onto a piece of scrap paper and turning it on.

FINAL STEP:  Decorate!

Now that you have a fully functioning device, truly transform it into an “artbot” by decorating your robot and giving it some real personality. I provided our scientists with pipe cleaners, googly eyes, feathers, and fun buttons. Some artbots can be made using plastic cups and the like, but the beauty of the styrofoam pool noodle pieces is that decorating is a snap! All you need to do is push materials directly into the styrofoam – no glue or tape required.

image-17

Let’s Decorate!

Now you can just have some fun 🙂 I actually covered our usual program tables with paper so my scientists didn’t even have to worry about scrap paper. Once the artbots were assembled and decorated, my scientists had free reign of table surfaces to create their art. At some point, of course, the battery will likely wear out and you will need to pull the motor assembly out of the styrofoam, remove the tape, and replace the battery. But that’s a simple price to pay for such a fun gadget!

 

Categories: Gadgets | Tags: , , | 9 Comments

Blog at WordPress.com.